Abstract

In this work, new composite material is manufactured from poly(methyl methacrylate) PMMA matrix reinforced by glass fibre type E-glass. The effect of volume fraction of fibre and length to diameter ratio is studied, and friction and wear characteristics were determined at different volume fractions and fibre sizes. The hardness and wear resistance of randomly distributed PMMA matrix composite were significantly enhanced, and the maximum conditions for reinforcement of PMMA matrix composite to improve tribology characteristics were evaluated. The effect of laser irradiation on the mechanical properties was evaluated by irradiation of composite material after manufacturing, with different kinds of lasers. The continuous wave (CW) argon-ion laser and pulsed Nd:YAG laser were used to irradiate composite material. Hardness, wear rate, and coefficient of friction were evaluated at the same test condition of the unirradiated composite. The significant improvement in improvement in the mechanical properties at certain irradiation conditions was evaluated. Keywords: structure, hardness, wear, PMMA, random distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call