Abstract
The properties of nanostructured multilayered coatings of the composition (Ti,Al)N–Mo2N, which were fabricated by the ion-plasma vacuum-arc deposition (arc-PVD), are investigated. The thickness of coating layers is comparable with the grain size, which is about 30–50 nm. The coating hardness reaches 40 GPa with relative plastic deformation work of about 60%. It is established by measuring scratching that the cohesion destruction character of the coating occurs exclusively according to the plastic deformation mechanism, which evidences its high fracture toughness. The local coating attrition to the substrate takes place under a load on the order of 75 N. The coating friction coefficient in testing conditions according to the “pin-on-disc” layout using the Al2O3 counterbody under a load of 5 N is 0.35 and 0.50 at temperatures of 20 and 500°C, respectively. The coating is almost unworn because of the formation of MoO3 oxide (the Magneli phase) operating as the solid lubricant in the friction zone. An increase in the friction coefficient and noticeable wear are observed with the further increase in the testing temperature, which is associated with the sublimation intensification of MoO3 from the working surfaces and lowering its operational efficiency as the lubricant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.