Abstract
There is intensive searching for superhard materials in both theoretical and experimental studies. Refractory and transition metal carbides are typical materials with high hardness. In this study, first-principles calculations were performed first to analyze the electronic structures and mechanical properties of the tungsten-carbide-based compounds. The results indicated that tungsten carbide could be hardened by alloying elements with high work functions to tailor the Fermi level and electron density. Guided by the calculations, a new type of tungsten carbide alloyed with Re was synthesized. The Young's modulus and hardness of the Re-alloyed tungsten carbide are increased by 31% and 44%, respectively, as compared with those of tungsten carbide. This study provides a new methodology to design superhard materials on a feasible electronic base using work function as a simple guiding parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica Section B, Structural science, crystal engineering and materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.