7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.surfcoat.2020.125639
Copy DOIJournal: Surface and Coatings Technology | Publication Date: Mar 13, 2020 |
Citations: 13 |
The deposition of protective hardening coatings allows increasing the lifetime of important technical materials and pure metals. This work shows the possibility of depositing protective coatings based on cubic tungsten carbide (WC1-x) on metal substrates using a high-speed (~1 km/s) plasma jet generated by a coaxial magneto-plasma accelerator. In a plasma spraying process, the necessary conditions (high sputtering and crystallization rates) are created for synthesizing the high-temperature WC1-x phase and stabilizing it in the coating structure. The formation of WC1-x phase was confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. The substrate parameters such as linear dimensions and heat dissipation rate were found to directly affect the phase composition (WC1-x yield) and the structure of the deposited coating. The coatings with a higher WC1-x content are characterized by an increased hardness. The firstly made direct measurements of a Berkovich hardness (H = 33.0 ± 0.9 GPa) and Young's modulus (E = 401 ± 14 GPa) for bulk WC1-x grains, exceeding several micrometers in size, confirmed the suggestion about higher mechanical properties of the metastable WC1-x phase in comparison with hexagonal tungsten carbides WC and W2C.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.