Abstract

It is known that lead-antimony alloys are very well hardened by continuous precipitation, whereas lead-tin alloys present a discontinuous precipitation with a weak hardening effect. In these binary alloys, there is precipitation of either antimony or tin. In ternary alloys, the compound SbSn can also precipitate. This study is focused on the type of precipitation, the nature and the morphology of the precipitated phases, and the intensity of hardening in ternary PbSbSn alloys in relation to the composition of the alloys and the ternary diagram. To simulate the different processes of grid production, four states are studied, namely, as-cast product, rehomogenized, cold worked, cold worked and rehomogenized. The alloys contain up to 2.5 wt.% Sb and 2.5 wt.% Sn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.