Abstract

Specimens of an oxide dispersion strengthened (ODS) ferritic steel (15Cr-4Al-0.6Zr-0.1Ti) are implanted with multiple-energy He ions at room temperature to create a damage plateau of 0.4 dpa for the average (corresponding to an He concentration of about 7000 appm) from the near surface to a depth about 1 μm. The specimen is subsequently thermally annealed at 800°C for 1 h in a vacuum so that simple defects can be formed in the as-implanted state that has undergone significant recombination, meanwhile helium bubbles at nano-scale are formed. Hardness of the specimens are tested with the nano-indentation technique. A hardening by 25% is observed. Microstructures of the specimen after irradiation/annealing are investigated with transmission electron microscopy. Helium bubbles are generally located at dislocations and grain boundaries. Using the dispersed barrier strength model, the strength factor of helium bubbles in the ODS ferritic steel is estimated to be between 0.1 and 0.26, which is close to that of helium bubbles in austenitic steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.