Abstract

The state of the grain boundaries and the solid solution is analyzed for influence on the yield stress over a wide range of grain sizes for pure metals, low-doped alloys, and multicomponent solid solutions, including high-entropy alloys. A generalized equation is derived using the averaging integrals to describe the yield stress and hardness normalized to Young’s modulus versus the grain size. The potential to reach the maximum hardening for nanostructured materials through the use of grain-boundary engineering is considered. The concept of ‘useful’ impurities intended to bring the strength of such materials to the level comparable with the maximum (theoretically) possible one (E/2π–E/30) is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.