Abstract

The Norton-Bailey equation was used to simulate by finite elements the hardening and dynamic recovery of copper during the hot compression tests. The constants of Norton-Bailey equation were determined from the Voce-Kocks model. The simulation assumes a Mortar Contact with Coulomb friction and axial symmetry. Numerical results were compared with experiments. Six compression tests were carried out at 804 K, three with a strain rate of 0.1 s-1 and three with a strain rate of 1 s-1. The results show: The differences between the experiments and the simulations are less than 7.69% for strain rates of 0.1 s-1, and less than 0.67% for strain rates of 1 s-1. This shows that the simulation of hardening and dynamic recovery of hot copper is possible with the Norton-Bailey equation. Better numerical results were obtained when the behavior of copper is typical of hardening and dynamic recovery, and this happen for high values of strain rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call