Abstract

Transparent materials with glasslike hardness and polymer-like flexibility are highly useful but rare. This paper reports the incorporation of the low-surface-tension pentafluoropropionic acid (FC2-COOH) or tridecafluoroheptanoic acid (FC6-COOH) into a 3-glycidyloxypropyl polyhedral oligomeric silsesquioxane (GPOSS) coating to yield hard/flexible omniphobic coatings. To avoid the macrophase separation of these additives from GPOSS and thus maintain the coating's high transparency, they are first reacted with excess GPOSS via the opening of the glycidyl rings with the carboxy groups to produce mixtures of GPOSS and GPOSS-FC2 or GPOSS-FC6. The fluorinated GPOSS mixtures are then photochemically cured. This study investigates the influence of the type and amount of a fluorinated agent used on the wetting and mechanical properties of the coatings. The wetting properties studied include surface energies, liquid sliding behavior, and repellency against an artificial fingerprint liquid. Meanwhile, the mechanical properties include pencil hardness, Young's modulus, hardness, and resistance to abrasion by steel wool and cheesecloth. Aside from producing coatings that may serve as a viable alternative for the currently used hard/flexible coatings in foldable smartphones, this paper provides guidelines for producing coatings with further improved omniphobicity and wear resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call