Abstract

Explosive transient events occur throughout the solar atmosphere. The differing manifestations range from coronal mass ejections to Ellermann bombs. The former may have negligible signatures in the lower atmosphere, and the latter may have negligible nonthermal emissions such as hard X-radiation. A solar flare generally involves a broad range of emission signatures. Using a suite of four space-borne telescopes, we report a solar event that combines aspects of simple UV bursts and hard X-ray emitting flares at the same time. The event is a compact C-class flare in active region AR11861, SOL2013-10-12T00:30. By fitting a combined isothermal and nonthermal model to the hard X-ray spectrum, we inferred plasma temperatures in excess of 15\,MK and a nonthermal power of about $3 xii and xxi emission lines, which are characteristic of emission from hotter plasma with a temperature over 1\,MK. Moreover, the event exhibited very limited signatures in the extreme-UV wavelengths. Our study indicates that a UV burst -- hard X-ray flare hybrid phenomenon exists in the low solar atmosphere. Plasma that heats to high temperatures coupled with particle acceleration by magnetic energy that is released directly in the lower atmosphere sheds light on the nature of active region core heating and on inferences of flare signatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.