Abstract

Understanding and designing sophisticated new materials require measurements of not only their average structural properties but also their dynamic behavior. X-ray photon correlation spectroscopy (XPCS) provides this information by characterizing fluctuations in condensed matter across a broad range of length scales and timescales. Over the past two decades, XPCS has provided a wide variety of results in the study of materials properties. In this review, we provide an overview of coherence, photon correlation spectroscopy, and the dynamic structure factor as well as information on the mechanics of XPCS experiments. We highlight the impact that this infrastructure has had on materials research and the bright future that is forthcoming with the anticipated upgrade of many third-generation synchrotron sources to fourth-generation multibend achromat sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.