Abstract
We report the detection of flaring events in NGC 4395 ULX1, a nearby ultraluminous X-ray source (ULX), for the first time, using recent XMM-Newton observations. The flaring episodes are spectrally harder than the steady-emission intervals, resulting in higher fractional variability in the high-energy regime. A thin Keplerian and a slim accretion disk provide the best-fit continuum for XMM-Newton spectra. All observations show a broad hump-like feature around ∼0.9 keV, which can be associated with a collection of blended emission lines, and suggests the presence of a wind or outflow in this ULX through comparison with other ULXs that show a similar feature. The flaring spectra correspond to higher slim-disk temperatures due to a higher mass accretion rate under an advection-dominated accretion scenario. The luminosity–temperature (L-T) values in different flux states show a positive trend. When characterized with a power-law relation, the L-T profile is broadly consistent with both L ∝ T 2 and L ∝ T 4 relations for the analyzed data. The empirical predictions for a slim accretion disk in the case of super-Eddington accretion onto a stellar-mass compact object is L ∝ T 2, which is a possible scenario in ULX1. The origin of the flaring events is understood as an intrinsic change in accretion rate or presence of variable clumpy wind in the inner region of the accretion disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.