Abstract

In recent years, machining of hard-to-cut metals by hard turning process is an embryonic technology for machining industry and research development. Hard turning is generally defined as the material removal process of hardened steel having hardness greater than 45 HRC. The current research presents a comparative hard turning investigation on EN 31 (56 ± 1 HRC) grade steel using physical vapor deposition (PVD) coated carbide tool under dry and wet cooling. The selection of a better cooling strategy among dry and wet cooling was based on the value of obtained surface roughness (Ra) and material removal rate (MRR) in hard turning. Wet cooling exhibited better performance over dry cutting as lower Ra and greater MRR are achieved with wet cooling. Further, considering Taguchi L16 orthogonal array, hard turning experiments were executed in wet cooling and responses like surface roughness (Ra), material removal rate (MRR), and diameter error were studied. Further, the Grey-fuzzy hybrid optimization tool was employed and found improved results relative to the alone grey relational analysis as about 9 % less Ra and 2.612 times more MRR is noticed at the grey fuzzy optimal set of parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call