Abstract

Porous Nb2O5 films obtained by a modified hard-template method were studied and their optical and sensing properties were optimized in order to find applications in chemo-optical sensing. Porous films were prepared by following three steps: liquid mixing of niobium sol and SiO2 colloids in different volume fractions, thermal annealing of spin-coated films for formation of a rigid niobia matrix, and selective removal of silica phase by wet etching thus generating free volume in the films. The morphology and structure of the films were studied using transmission electron microscopy and selected area electron diffraction, while their optical and sensing properties were estimated using UV-VIS-NIR reflectance measurements in different ambiences such as air, argon and acetone vapors and nonlinear curve fitting of the measured reflectance spectra. Bruggeman effective medium approximation was applied for determination of the volume fraction of silica and air in the films, thus revealing the formation of porosity inside the films. For further characterization of composite films, their water contact angles were measured and finally conclusions about the impact of initial chemical composition and etching duration on properties of the films were drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.