Abstract

We have investigated several effects due to the confinement of polymer melts by impenetrable (hard) surfaces in the self-consistent field calculations. To adequately represent such confinement, the total (normalized) polymer segmental density (volume fraction) is usually constrained to an imposed profile that continuously decreases from 1 in the interior of confined melts to 0 at the surfaces over a short distance. The choice of this profile strongly influences the numerical performance of the self-consistent field calculations. In addition, for diblock copolymers A-B the hard-surface confinement has both energetic and entropic effects: On one hand, the decrease of polymer density from 1 reduces A-B repulsion and favors morphologies with more A-B interfaces near the surfaces. On the other hand, the enrichment of chain ends and depletion of middle segments near the surfaces favor parallel morphologies where chains orient mainly perpendicular to the surfaces. These two effects are comparable in magnitude, and for asymmetric diblock copolymers result in an entropic preference of a neutral surface for the shorter block as proposed previously [Q. Wang et al., Macromolecules 34, 3458 (2001)]. The hard-surface effects are weak in practice and thus manifested only when the surfaces are nearly neutral.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call