Abstract

Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous fluid systems. In this paper we present new high-precision molecular-dynamics computer simulations for a hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile $\rho(z)$ at various bulk densities, the wall surface free energy $\gamma$, the excess adsorption $\Gamma$, and the excess volume $v_{ex}$, which is closely related to $\Gamma$. We compare all benchmark quantities with predictions from state-of-the-art classical density functional theory calculations within the framework of fundamental measure theory. While we find overall good agreement between computer simulations and theory, significant deviations appear at sufficiently high bulk densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call