Abstract

Continuum methods are not accurate enough for flows at high Knudsen numbers, whereas rigorous molecular dynamics (MD) methods are too costly for simulations at practical dimensions. Hard-sphere (HS) model is a simplified MD method efficient for dilute gaseous flow but is of poor parallelism due to its event-driven nature, which sets a strong limitation to its large-scale applications. In this work, pseudo-particle modelling, a time-driven modelling approach is coupled with HS model to construct a scalable parallel method capable of simulating flows and transport processes at high Knudsen numbers without losing necessary molecular details in describing their macro-scale behaviours. The method is validated in several classical simulation cases and its performance is evaluated to be favourable. To demonstrate the potential applications of this method, we also simulate the diffusion of small molecules in multi-scale porous media which is related to catalysis, material preparation and micro chemical engineering in the long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.