Abstract

Hard spheres with ratios of diameters of 3:5 and 1:3 and at various densities are studied by means of grand canonical ensemble (GCE) simulations, first- and second-order Percus—Yevick theory, scaled particle theory (SPT) and density functional theory (DFT). Generally, but not always, the density profiles of the first-order Percus—Yevick (PY1) theory results are smaller at contact than the GCE simulation results. The second-order Percus—Yevick (PY2) and DFT results are in much better agreement with the simulations. PY2 theory seems to be more accurate than DFT but is much more demanding computationally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.