Abstract
Piezoelectric hard/soft effects of multivalence co-dopants (Sb and Mn) in correlation with their location in the lattice, were investigated in PZT ceramics, prepared by conventional ceramic technology, with the following compositions: Pb0.98Sr0.02 ((Ti0.49Zr0.51)1-0.015-xMn0.015Sbx)O3 with x = 0, 0.005, 0.01, 0.02, 0.03, where antimony was initially assumed to substitute for Ti/Zr ions. The antimony valence state was found to be +3 in all samples by X-ray Photoelectron Spectroscopy investigations. The Electron Paramagnetic Resonance spectra evidenced a steep enhancement of the Mn2+ concentration upon increasing antimony doping level, explained by a charge compensation mechanism, between the Sb3+ ions substituting Pb2+ at the A-sites and the Mn2+ ions, localized at the B-sites. The incorporation of Sb3+ at the A-site of the PZT lattice is also supported by the variation of the lattice parameters, determined by X-ray Diffraction, with the increasing Sb concentration. The investigation of the dielectric, electromechanical and ferroelectric properties evidenced a hard piezoelectric behavior, mainly attributed to the presence of large sized Mn2+ ions, localized at B-sites. Our results prove that the piezoelectric hard/soft response is decisively influenced by the interplay between multiple valence states and locations of the co-dopants, on one hand, and the charge compensation mechanisms, on the other hand. This provides indirect information about the location of some co-dopants which can substitute for both cationic sites in the PZT based ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.