Abstract

The achievement of atomic control over the organic-inorganic interface is key to engineering electronic and spintronic properties of molecular devices. We leverage insights from inorganic chemistry to create hard-soft acid-base (HSAB) theory-derived design principles for incorporation of single molecules onto metal electrodes. A single molecule circuit is assembled via a bond between an organic backbone and an under-coordinated metal atom of the electrode surface, typically Au. Here, we study molecular composition factors affecting the junction assembly of coordination complexes containing transition metals atoms on Au electrodes. We employ hetero- and homobimetallic lantern complexes and systematically change the coordination environment to vary the character of the intramolecular bonds relative to the electrode-molecule interaction. We observe that trends in the robustness and chemical selectivity of single molecule junctions formed with a range of linkers correlate with HSAB principles, which have traditionally been used to guide atomic arrangements in the synthesis of coordination complexes. We find that this similarity between the intermolecular electrode-molecule bonding in a molecular circuit and the intramolecular bonds within a coordination complex has implications for the design of metal-containing complexes compatible with electrical measurements on metal electrodes. Our results here show that HSAB principles determine which intramolecular interactions can be compromised by inter molecule-electrode coordination; in particular on Au electrodes, soft-soft metal-ligand bonding is vulnerable to competition from soft-soft Au-linker bonding in the junction. Neutral donor-acceptor intramolecular bonds can be tuned by the Lewis acidity of the transition metal ion, suggesting future synthetic routes toward incorporation of transition metal atoms into molecular junctions for increased functionality of single molecule devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call