Abstract

Coherent control of large entangled graph states enables a wide variety of quantum information processing tasks, including error-corrected quantum computation. The linear optical approach offers excellent control and coherence, but today most photon sources and entangling gates—required for the construction of large graph states—are probabilistic and rely on postselection. In this work, we provide proofs and heuristics to aid experimental design using postselection. We introduce a versatile design rule for postselectable experiments: drawn as a graph, with qubit as vertices and gates and photon-pair sources as edges, an experiment may only contain cycles with an odd number of sources. We analyse experiments that use photons from postselected photon-pair sources, and lower bound the number of accessible classes of graph state entanglement in the non-degenerate case—graph state entanglement classes that contain a tree are are always accessible. The proportion of graph states accessible by postselection shrinks rapidly, however. We list accessible classes for various resource states up to 9 qubits. Finally, we apply these methods to near-term multi-photon experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.