Abstract

The biochemistry of contact lens-cornea interaction is not well understood, although previous studies have suggested that corneal metabolic changes may be the underlying factor in morphological alterations. Using a rabbit model, this interaction has been examined with 31P nuclear magnetic resonance (NMR) spectroscopy, which detects signals principally from the epithelium. The examination was supplemented with electron microscopy and histochemistry. Polymethylmethacrylate lenses caused reversible changes, including activation of anaerobic glycolysis and disturbance of membrane metabolite levels. These changes were far more severe than those occurring during prolonged eye closure. There appears to be an association between cellular deterioration and loss of membrane metabolites. On the other hand, oxygen-permeable silicone lenses allowed maintenance of nearly normal metabolic patterns. These results show multifaceted corneal response to hard contact lens wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.