Abstract

Abstract Hard carbons are extensively studied for application as anode materials in sodium-ion batteries, but only recently a great interest has been focused toward the understanding of the sodium storage mechanism and the comprehension of the structure–function correlation. Although several interesting mechanisms have been proposed, a general mechanism explaining the observed electrochemical processes is still missing, which is essentially originating from the remaining uncertainty on the complex hard carbons structure. The achievement of an in-depth understanding of the processes occurring upon sodiation, however, is of great importance for a rational design of optimized anode materials. In this review, we aim at providing a comprehensive overview of the up-to-date known structural models of hard carbons and their correlation with the proposed models for the sodium-ion storage mechanisms. In this regard, a particular focus is set on the most powerful analytical tools to study the structure of hard carbons (upon de-/sodiation) and a critical discussion on how to interpret and perform such analysis. Targeting the eventual commercialization of hard carbon anodes for sodium-ion batteries – after having established a fundamental understanding – we close this review with a careful evaluation of potential strategies to ensure a high degree of sustainability, since this is undoubtedly a crucial parameter to take into account for the future large-scale production of hard carbons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.