Abstract

Carbon-based composites have been proven to be strong candidates for microwave absorbers in recent years. However, as an important member, magnetic hard carbon (HC)-based composites have rarely been studied in the field of microwave absorption. In this study, HC embedded with FeSiAl (FeSiAl@HC) was synthesized by pyrolyzing a mixture of FeSiAl flakes and phenolic resin (PR). The as-synthesized HC-FeSiAl exhibited a layered structure, and the detailed microstructures were modified by changing the mass ratio of FeSiAl flakes and PR. Thus, the as-synthesized HC-FeSiAl exhibited tunable magnetic properties, wealthy functional groups, excellent thermal stability, and enhanced microwave absorption properties. The optimal minimum reflection loss is lower up to −36.1 dB, and the effective absorption bandwidth is wider up to 11.7 GHz. These results indicated that HC-FeSiAl should be a strong candidate for practical applications of microwave absorption, which may provide new insight into the synthesis of magnetic HC-based composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call