Abstract

A novel combination of hard carbon anode sodium pre‐loading and a tailored electrolyte is used to prepare room temperature sodium‐sulfur full cell batteries. The electrochemical loading with sodium ions is realized in a specific mixture of diethyl carbonate, ethylene carbonate, and fluoroethylene carbonate electrolyte in order to create a first solid electrolyte interface (SEI) on the anode surface. Combining such anodes with a porous carbon/sulfur composite cathode results in full cells with a significantly decreased polysulfide shuttle when compared to half cells combined with metallic sodium anodes. Further optimization involves the use of Na2S/P2S5 doped tetraethylene glycol dimethyl ether based electrolyte in the full cell for the formation of a second SEI, reducing polysulfide shuttle even further. More importantly, the electrochemical discharge processes in the cell are improved by adding this dissolved complexation agent to the electrolyte. As a result of this combination sodium‐sulfur cells with tailored cathode materials and electrolytes can achieve high discharge capacities up to 980 mAh g−1sulfur and 1000 cycles with 200 mAh g−1sulfur remaining capacity, at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call