Abstract

A model of memristor-based Chua’s oscillator is studied. The considered system has infinitely many equilibrium points, which build a line of equilibria. Bifurcational mechanisms of oscillation excitation are explored for different forms of nonlinearity. Hard and soft excitation scenarios have principally different nature. The hard excitation is determined by the memristor piecewise-smooth characteristic and is a result of a border-collision bifurcation. The soft excitation is caused by addition of a smooth nonlinear function and has distinctive features of the supercritical Andronov–Hopf bifurcation. Mechanisms of instability and amplitude limitation are described for both two cases. Numerical modeling and theoretical analysis are combined with experiments on an electronic analog model of the system under study. The issues concerning physical realization of the dynamics of systems with a line of equilibria are considered. The question on whether oscillations in such systems can be classified as the self-sustained oscillations is raised.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.