Abstract

Skin has a remarkable capacity for regeneration; however, with an ever aging population, there is a growing burden to the healthcare system from chronic wounds. Novel therapies are required to address the problems associated with nonhealing chronic wounds. Novel wound dressings that can encourage increased reepithelialization could help to reduce the burden of chronic wounds. A suite of chemically defined surfaces have been produced using plasma polymerization, and the ability of these surfaces to support the growth of primary human skin cells has been assessed. Additionally, the ability of these surfaces to modulate cell migration and morphology has also been investigated. Keratinocytes and endothelial cells were extremely sensitive to surface chemistry showing increased viability and migration with an increased number of carboxylic acid functional groups. Fibroblasts proved to be more tolerant to changes in surface chemistry; however, these cells migrated fastest over amine-functionalized surfaces. The novel combination of comprehensive chemical characterization coupled with the focus on cell migration provides a unique insight into how a material's physicochemical properties affect cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.