Abstract

We demonstrate a cryogenic scanning probe microscope (SPM) that has been modified to be controlled with a haptic device, such that the operator can ‘feel’ the surface of a sample under investigation. This system allows for direct tactile sensation of the atoms in and on top of a crystal, and allows the operator to perceive, by using different SPM modalities, sensations that are representative of the relevant atomic forces and tunneling processes controlling the SPM. In particular, we operate the microscope in modes of (1) conventional STM feedback, (2) energy-dependent electron density imaging, (3) q-plus AFM frequency shift based force sensing, and (4) atomic manipulation/sliding. We also use software to modify the haptic feedback sensation to mimic different interatomic forces, including covalent bonding, Coulomb repulsion, Van der Waals repulsion and a full Lennard-Jones potential. This manner of SPM control creates new opportunities for human-based intuition scanning, and also acts as a novel educational tool to aid in understanding materials at an atomic level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.