Abstract

Industrial robotics currently focuses on the utilization within clearly defined production environments. A paradigm shift away from repetition of static tasks towards dynamic human–robot collaboration is noticeable, specifically due to developments triggered by Industry 4.0 concepts. Within construction industries static automation can only be achieved at a prefabrication level; through these new developments adaptable robotics can be utilized for new concepts of on-site robotic assistance. Within this paper, we illustrate our approach towards robotics that adapts to changing environmental conditions and material features. Simultaneously we take advantage of existing pre-planning methods within computer-aided design (CAD). In order to take full advantage of the mixed human and machine work environments within construction, we enable on-site adaptation towards a pre-planned assembly strategy. We show our applications within the assembly of complex timber structures as well as transfer of the concept towards other construction tasks. By combining a priori knowledge from the design phase with haptic interaction primitives, we enable intuitive human–robot collaboration. For this approach the term of haptic programming was coined, which allows the exchange of knowledge between the user and a robot on a physical level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.