Abstract

This paper presents a system of two double-gimbal control moment gyroscopes (CMGs) for providing ungrounded kinesthetic haptic feedback. By spinning a second flywheel opposite the first, and rotating them through opposite trajectories, undesired gyroscopic effects can be eliminated, isolating a single torque axis. This produces a moment pulse proportional to the flywheel spin speed and rotation speed. Rotating the CMG gimbals quickly in one direction, then resetting them more slowly generates repeated torque pulses indicating a clear direction cue. We present the mathematical model for moments produced by this system and verify that the performance of our device matches this model. Using these asymmetric moment pulses, we provide haptic cues to participants in two studies. In the first study, users simply identify the direction of torque cues. In the second study, we use the torque pulses to guide users to target orientations. Performance in both studies shows that this system has the potential to provide useful guidance for applications where ungrounded haptic feedback is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.