Abstract

This paper tackles a challenging problem for interactive rigid-fluid interaction sound synthesis. One core issue of the rigid-fluid interaction in multisensory VR system is how to balance the algorithm efficiency, result authenticity and result synchronization. Since the sampling rate of audio is far greater than visual and haptic modalities, sound synthesis for a multisensory VR system is more difficult than visual simulation and haptic rendering, which still remains an open challenge until now. Therefore, this paper focuses on developing an efficient sound synthesis method tailored for a multisensory system. To improve the result authenticity while ensuring real time performance and result synchronization, we propose a novel haptic force guided granular sound synthesis method tailored for sounding in multisensory VR systems. To the best of our knowledge, this is the first step that exploits haptic force feedback from the tactile channel for guiding sound synthesis in a multisensory VR system. Specifically, we propose a modified spectral granular sound synthesis method, which can ensure real time simulation and improve the result authenticity as well. Then, to balance the algorithm efficiency and result synchronization, we design a multi-force (MF) granulation algorithm which avoids repeated analysis of fluid particle motion and thereby improves the synchronization performance. Various results show that the proposed sound synthesis method effectively overcomes the limitations of existing methods in terms of audio modality, which has great potential to provide powerful technological support for building a more immersive multisensory VR system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.