Abstract

Robotics teleoperation enables human operators to control the movements of distally located robots. The development of new wearable interfaces as alternatives to hand-held controllers has created new modalities of control, which are more intuitive to use. Nevertheless, such interfaces also require a period of adjustment before operators can carry out their tasks proficiently. In several fields of human-machine interaction, haptic guidance has proven to be an effective training tool for enhancing user performance. This paper presents the results of psychophysical and motor learning studies that were carried out with human participant to assess the effect of cable-driven haptic guidance for a task involving aerial robotic teleoperation. The guidance system was integrated into an exosuit, called the Flyjacket, that was developed to control drones with torso movements. Results for the just noticeable difference and from the Stevens Power Law suggest that the perception of force on the users' torso scales linearly with the amplitude of the force exerted through the cables and the perceived force is close to the magnitude of the stimulus. Motor learning studies reveal that this form of haptic guidance improves user performance in training, but this improvement is not retained when participants are evaluated without guidance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.