Abstract

This paper presents a method to alleviate performance degradation issues of Haptic Collision Detection when the Bounding Volumes or Bounding Volume Hierarchies of multiple disjoint objects are overlapping or inclusive and force the Haptic Collision Detection methods into narrow phase collision detection with all involved objects. The proposed method aims to generate tighter, mutually exclusive Bounding Volumes at the pre-processing stage, and to quickly cull irrelevant nearby objects at the broad phase to ensure that the Haptic Collision Detection methods will not be overloaded with unnecessary narrow phase collision detection. The proposed method is based on a hybrid representation of Bounding Volume and Space Partitioning and is implemented as an algorithm that automatically generates these new Bounding Volumes for disjoint objects, with details and corner cases discussed. A series of experiments based on real-life Haptic Collision Detection applications has been conducted. The results are analyzed and compared with those from an existing Haptic Collision Detection algorithm. The outcome demonstrates the capability of the proposed method in maintaining a stable Haptic Collision Detection performance under various challenging situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call