Abstract
The search for genetic variants that are linked to complex diseases such as cancer, Parkinson's;, or Alzheimer's; disease, may lead to better treatments. Since haplotypes can serve as proxies for hidden variants, one method of finding the linked variants is to look for case-control associations between the haplotypes and disease. Finding these associations requires a high-quality estimation of the haplotype frequencies in the population. To this end, we present, HaploPool, a method of estimating haplotype frequencies from blocks of consecutive SNPs. HaploPool leverages the efficiency of DNA pools and estimates the population haplotype frequencies from pools of disjoint sets, each containing two or three unrelated individuals. We study the trade-off between pooling efficiency and accuracy of haplotype frequency estimates. For a fixed genotyping budget, HaploPool performs favorably on pools of two individuals as compared with a state-of-the-art non-pooled phasing method, PHASE. Of independent interest, HaploPool can be used to phase non-pooled genotype data with an accuracy approaching that of PHASE. We compared our algorithm to three programs that estimate haplotype frequencies from pooled data. HaploPool is an order of magnitude more efficient (at least six times faster), and considerably more accurate than previous methods. In contrast to previous methods, HaploPool performs well with missing data, genotyping errors and long haplotype blocks (of between 5 and 25 SNPs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.