Abstract

Haplophytin-A (10-methoxy-2,2-dimethyl-2,6-dihydro-pyrano[3,2-c]quinolin-5-one), a novel quinoline alkaloid, was isolated from the Haplophyllum acutifolium. In this study, we investigated the effect of haplophytin-A on the apoptotic activity and the molecular mechanism of action in human promyelocytic leukemia HL-60 cells. Treatment with haplophytin-A (50 μM) induced classical features of apoptosis, such as, DNA fragmentation, DNA ladder formation, and the externalization of annexin-V-targeted phosphatidylserine residues in HL-60 cells. In addition, haplophytin-A triggered the activations of caspase-8, -9, and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, haplophytin-A caused the loss of mitochondrial membrane potential (Δ Ψ m ) and the release of cytochrome c and Smac/DIABLO to the cytosol, and modulated the expression levels of Bcl-2 family proteins. We further demonstrated that knockdown of caspase-8 using its siRNA inhibited the mitochondrial translocation of tBid, the activations of caspase-9 and caspase-3, and subsequent DNA fragmentation by haplophytin-A. Furthermore, haplophytin-A-induced the formation of death-inducing signaling complex (DISC) and then activated caspase-8 in HL-60 cells. During haplophytin-A-induced apoptosis, caspase-8-stimulated tBid provide a link between the death receptor-mediated extrinsic pathway and the mitochondria- mediated intrinsic pathway. Taken together, these results suggest that the novel compound haplophytin-A play therapeutical role for leukemia via the potent apoptotic activity through the extrinsic pathway, involving the intrinsic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call