Abstract

Mammalian sirtuin 6 (Sirt6) is a conserved NAD+-dependent deacylase and mono-ADP ribosylase that is known to be involved in DNA damage repair, metabolic homeostasis, inflammation, tumorigenesis, and aging. Loss of Sirt6 in mice results in accelerated aging and premature death within a month. Here, we show that haploinsufficiency (i.e., heterozygous deletion) of Trp53 dramatically extends the lifespan of both female and male Sirt6-deficient mice. Haploinsufficiency of Trp53 in Sirt6-deficient mice rescues several age-related phenotypes of Sirt6-deficient mice, including reduced body size and weight, lordokyphosis, colitis, premature senescence, apoptosis, and bone marrow stem cell decline. Mechanistically, SIRT6 deacetylates p53 at lysine 381 to negatively regulate the stability and activity of p53. These findings establish that elevated p53 activity contributes significantly to accelerated aging in Sirt6-deficient mice. Our study demonstrates that p53 is a substrate of SIRT6, and highlights the importance of SIRT6-p53 axis in the regulation of aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.