Abstract
Although a cardioprotective function of target of rapamycin (TOR) signaling inhibition has been suggested by pharmacological studies using rapamycin, genetic evidences are still lacking. We explored adult zebrafish as a novel vertebrate model for dissecting signaling pathways in cardiomyopathy. We generated the second adult zebrafish cardiomyopathy model induced by doxorubicin. By genetically analyzing both the doxorubicin and our previous established anemia-induced cardiomyopathy models, we decipher the functions of TOR signaling in cardiomyopathies of different etiology. Along the progression of both cardiomyopathy models, we detected dynamic TOR activity at different stages of pathogenesis as well as distinct effects of TOR signaling inhibition. Nevertheless, cardiac enlargement in both models can be effectively attenuated by inhibition of TOR signaling through short-term rapamycin treatment. To assess the long-term effects of TOR reduction, we used a zebrafish target of rapamycin (ztor) mutant identified from an insertional mutagenesis screen. We show that TOR haploinsufficiency in the ztor heterozygous fish improved cardiac function, prevented pathological remodeling events, and ultimately reduced mortality in both adult fish models of cardiomyopathy. Mechanistically, these cardioprotective effects are conveyed by the antihypertrophy, antiapoptosis, and proautophagy function of TOR signaling inhibition. Our results prove adult zebrafish as a conserved novel vertebrate model for human cardiomyopathies. Moreover, we provide the first genetic evidence to demonstrate a long-term cardioprotective effect of TOR signaling inhibition on at least 2 cardiomyopathies of distinct etiology, despite dynamic TOR activities during their pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.