Abstract

Clinical trials are currently testing whether induction of haploidentical mixed chimerism (Haplo-MC) induces organ transplantation tolerance. Whether Haplo-MC can be used to treat established autoimmune diseases remains unknown. Here, we show that established autoimmunity in euthymic and adult-thymectomized NOD (H-2g7) mice was cured by induction of Haplo-MC under a non-myeloablative anti-thymocyte globulin-based conditioning regimen and infusion of CD4+ T cell-depleted hematopoietic graft from H-2b/g7 F1 donors that expressed autoimmune-resistant H-2b or from H-2s/g7 F1 donors that expressed autoimmune-susceptible H-2s. The cure was associated with enhanced thymic negative selection, increased thymic Treg (tTreg) production, and anergy or exhaustion of residual host-type autoreactive T cells in the periphery. The peripheral tolerance was accompanied by expansion of donor- and host-type CD62L-Helios+ tTregs as well as host-type Helios-Nrp1+ peripheral Tregs (pTregs) and PD-L1hi plasmacytoid DCs (pDCs). Depletion of donor- or host-type Tregs led to reduction of host-type PD-L1hi pDCs and recurrence of autoimmunity, whereas PD-L1 deficiency in host-type DCs led to reduction of host-type pDCs and Helios-Nrp1+ pTregs. Thus, induction of Haplo-MC reestablished both central and peripheral tolerance through mechanisms that depend on allo-MHC+ donor-type DCs, PD-L1hi host-type DCs, and the generation and persistence of donor- and host-type tTregs and pTregs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call