Abstract

MotivationVariation calling is the process of detecting differences between donor and consensus DNA via high-throughput sequencing read mapping. When evaluating the performance of different variation calling methods, a typical scenario is to simulate artificial (diploid) genomes and sample reads from those. After variation calling, one can then compute precision and recall statistics. This works reliably on SNPs but on larger indels there is the problem of invariance: a predicted deletion/insertion can differ slightly from the true one, yet both make the same change to the genome. Also exactly correct predictions are rare, especially on larger insertions, so one should consider some notion of approximate predictions for fair comparison.ResultsWe propose a full genome alignment-based strategy that allows for fair comparison of variation calling predictions: First, we apply the predicted variations to the consensus genome to create as many haploid genomes as are necessary to explain the variations. Second, we align the haploid genomes to the (aligned) artificial diploid genomes allowing arbitrary recombinations. The resulting haploid to diploid alignments tells how much the predictions differ from the true ones, solving the invariance issues in direct variation comparison. In an effort to make the approach scalable to real genomes, we develop a simple variant of the classical edit distance dynamic programming algorithm and apply the diagonal doubling technique to optimise the computation. We experiment with the approach on simulated predictions and also on real prediction data from a variation calling challenge.

Highlights

  • In the study of human genetics, variation calling from high-throughput sequencing reads [1] is a revolutionary technique

  • We propose a full genome alignment-based strategy that allows for fair comparison of variation calling predictions: First, we apply the predicted variations to the consensus genome to create as many haploid genomes as are necessary to explain the variations

  • We experiment with the approach on simulated predictions and on real prediction data from a variation calling challenge

Read more

Summary

Introduction

In the study of human genetics, variation calling from high-throughput sequencing reads [1] is a revolutionary technique. Outside repetitive regions a good alignment is unique, if the resulting multiple alignment (read pileup) has columns where reads vote for something differing from the reference genome, the donor is very likely to contain this variant in his/her genome. One could argue that this problem is an enormous local multiple alignment problem, and so it is not surprising that methods trying to locally improve the alignment are able to improve the accuracy. This standard approach only captures small scale variations, and the methods for discovering large insertions, deletions, translocations, reversals, etc., are more involved [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.