Abstract
The complex pathogenesis of kidney disease is closely related to the diversity of kidney intrinsic cells. In this study, single-cell transcriptome sequencing technology was used to sequence and analyze blood and kidney tissue cells in normal control rats and rats with chronic kidney disease (CKD), focusing on key cell populations and functional enrichment to explore the pathogenesis of CKD. Oil red O staining and enzyme-linked immunosorbent assay (ELISA) were used to detect lipid droplets and free fatty acid (FFA). Quantitative real-time polymerase chain reaction (RT-PCR), western blot (WB) were used to verify the differential gene hydroxyacid oxidase 2 (HAO2) and fatty acid metabolic process in tissue to ensure the reliability of single-cell sequencing results. We successfully established a single-cell transcriptome atlas of blood and kidney tissue in rats with CKD, which were annotated into 14 cell subsets (MPCs, PT, Tc, DCT, B-IC, A-IC, CNT, ALOH, BC, Neu, Endo, Pla, NKT, Baso) according to marker gene, and the integrated single-cell atlas of rats showed a significant increase and decrease of MPCs and PTs in the CKD group, respectively. Functional analysis found extensive enrichment of metabolic-related pathways in PT cells, includes fatty acid metabolic process, cellular amino acid metabolic process and generation of precursor metabolites and energy. Immunohistochemical experiments determined that the differential gene HAO2 was localized in the renal tubules, and its expression was significantly reduced in CKD group compared with control, and oil red O staining showed that lipid droplets increased in the CKD group, after overexpression of HAO2 the lipid droplets was inhibited. ELISA assay showed that ATP content decreased in the CKD group and FFA increased in the CKD group. Moreover, the mitochondrial membrane potential of the cells in the OE-HAO2 group was significantly increased compared with OE-NC. The acyl-CoA oxidase 1(ACOX1), peroxisome proliferator-activated receptor alpha (PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were decreased in the CKD group, while genes and proteins were increased after overexpression of HAO2, and the AMP-activated protein kinase (AMPK) phosphorylated proteins were increased, the acetyl-CoA carboxylase (ACC) phosphorylated proteins were decreased, reversely. Therefore, HAO2 may be an important regulator of fatty acid metabolic processes in CKD, and overexpression of HAO2 can enhance fatty acid metabolism by promoting fatty acid oxidation (FAO) pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.