Abstract
We study the holomorphic Hardy-Orlicz spaces H^Φ(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in Cn . The function Φ is in particular such that H ^1(Ω) ⊂ H^Φ (Ω) ⊂ H ^p (Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω). As a consequence, we characterize those Hankel operators which are bounded from H ^Φ(Ω) into H^1 (Ω).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.