Abstract

Signals are generally modeled as a superposition of exponential functions in spectroscopy of chemistry, biology, and medical imaging. For fast data acquisition or other inevitable reasons, however, only a small amount of samples may be acquired, and thus, how to recover the full signal becomes an active research topic, but existing approaches cannot efficiently recover <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> -dimensional exponential signals with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N\geq 3$</tex-math></inline-formula> . In this paper, we study the problem of recovering <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N$</tex-math></inline-formula> -dimensional (particularly <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N\geq 3$</tex-math></inline-formula> ) exponential signals from partial observations, and formulate this problem as a low-rank tensor completion problem with exponential factor vectors. The full signal is reconstructed by simultaneously exploiting the CANDECOMP/PARAFAC tensor structure and the exponential structure of the associated factor vectors. The latter is promoted by minimizing an objective function involving the nuclear norm of Hankel matrices. Experimental results on simulated and real magnetic resonance spectroscopy data show that the proposed approach can successfully recover full signals from very limited samples and is robust to the estimated tensor rank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.