Abstract
The completion of matrices with missing values under the rank constraint is a nonconvex optimization problem. A popular convex relaxation is based on minimization of the nuclear norm (sum of singular values) of the matrix. For this relaxation, an important question is whether the two optimization problems lead to the same solution. This question was addressed in the literature mostly in the case of random positions of missing elements and random known elements. In this contribution, we analyze the case of structured matrices with a fixed pattern of missing values, namely, the case of Hankel matrix completion. We extend existing results on completion of rank-one real Hankel matrices to completion of rank-r complex Hankel matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.