Abstract
Hand pose estimation is a challenging task due to the large number of degrees of freedom and the frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-to-end trainable architecture for 2D hand pose estimation using a single RGB image as input. Adopting an encoder-decoder framework with multi-level features, along with a novel multi-level waterfall atrous spatial pooling module for multi-scale representations, our method achieves high accuracy in hand pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a multi-scale approach to representing context by incorporating spatial information at various levels of the network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall module leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through the concatenation of multi-level features from different levels of the network in the waterfall module. The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint heatmaps in a single stage. Our results demonstrate state-of-the-art performance on popular datasets and show that HandyPose is a robust and efficient architecture for 2D hand pose estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.