Abstract

Recently, handwritten digit recognition has become impressively significant with the escalation of the Artificial Neural Networks (ANN). Apart from this, deep learning has brought a major turnaround in machine learning, which was the main reason it attracted many researchers. We can use it in many applications. The main aim of this article is to use the neural network approach for recognizing handwritten digits. The Convolution Neural Network has become the center of all deep learning strategies. Optical character recognition (OCR) is a part of image processing that leads to excerpting text from images. Recognizing handwritten digits is part of OCR. Recognizing the numbers is an important and remarkable subject. In this way, since the handwritten digits are not of same size, thickness, position, various difficulties are faced in determining the problem of recognizing handwritten digits. The unlikeness and structure of the compositional styles of many entities further influences the example and presence of the numbers. This is the strategy for perceiving and organizing the written characters. Its applications are such as programmed bank checks, health, post offices, for education, etc. In this article, to evaluate CNN's performance, we used the MNIST dataset, which contains 60,000 images of handwritten digits. Achieves 98.85% accuracy for handwritten digit. And where 10% of the total images were used to test the data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.