Abstract
In Computer vision systems, computer vision works by imitating humans in their vision way which is known as the human vision system (HVS). In HVS, humans use their eyes and brains in order to see and classify any object around them. Hence, computer vision systems imitate HSV by developing several algorithms for classifying images and objects. The main goal of this paper is to propose a model for identifying and classifying the Arabic handwritten digits with high accuracy. The concept of deep learning via the convolutional neural network (CNN) with the ADBase database is used to achieve the goal. The training is done by having a 3*3 and 5*5 filters. Basically, while the classification phase distinct learning rates are used to train the network. The obtained results are encouraging and promising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Communication Networks and Information Security (IJCNIS)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.