Abstract

Patients with no or limited hand function usually have difficulty in using conventional input devices such as a mouse or a touch screen. Having the ability of manipulating electronic devices can give patients full access to the digital world, thereby increasing their independence and confidence, and enriching their lives. In this study, a hands-free human-computer interface was developed in order to help patients manipulate computers using facial movements. Five facial movement patterns were detected by four electromyography (EMG) sensors, and classified using myoelectric pattern recognition algorithms. Facial movement patterns were mapped to cursor actions including movements in different directions and click. A typing task and a drawing task were designed in order to assess the interaction performance of the interface in daily use. Ten able-bodied subjects participated in the experiment. In the typing task, the median path efficiency was 80.4%, and the median input rate was 5.9 letters per minute. In the drawing task, the median time to accomplish was 239.9 s. Moreover, all the subjects achieved high classification accuracy (median: 98.0%). The interface driven by facial EMG achieved high performance, and will be assessed on patients with limited hand functions in the future.

Highlights

  • Human facial movements have been established to be reliable input to a variety of machines including electronic devices [1,2,3,4,5,6] and assistive devices [7, 8]

  • This study aims to develop a facial movement-machine interface (FMMI) that maps facial movements to cursor actions including cursor movements in different directions and cursor click, so that users with no or limited hand function can use computers or other computer-controlled devices

  • We demonstrated the performance of humancomputer interactions using a cursor controlled by facial movements

Read more

Summary

Introduction

Human facial movements have been established to be reliable input to a variety of machines including electronic devices [1,2,3,4,5,6] and assistive devices [7, 8]. Such kind of human-machine interface provides an easy and intuitive approach to interacting with electronic devices for users with limited hand function [9]. One EMG channel is mapped to one control command, or a group of EMG channels

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.