Abstract

Network protocols in cellular wireless data networks must update routes as a mobile host moves between cells. These routing updates combined with some associated state changes are called handoffs. Most current handoff schemes in wireless networks result in data loss or large variations in packet delivery times. Unfortunately, many applications, such as real-time multimedia applications and reliable transport protocols, adapt to long term estimates of end-to-end delay and loss. Violations and rapid fluctuations of these estimates caused by handoff processing often result in degraded performance. For example, loss during handoff adversely affects TCP performance [4], and high packet loss and variable delays result in poor real-time multimedia performance. In this paper, we describe a multicast-based protocol that eliminates data loss and incurs negligible delays during a handoff. The basic technique of the algorithm is to anticipate a handoff using wireless network information in the form of received signal strengths and to multicast data destined for the mobile host to nearby base stations in advance. This routing, combined with intelligent buffering techniques at the base stations, enables very rapid routing updates and eliminates data loss without the use of explicit data forwarding. We have implemented this protocol using IP Multicast and Mobile IP-like routing. In our implementation, handoffs typically take between 8 and 15 ms to complete and result in no data loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.