Abstract
Human operators have difficulty driving cranes quickly, accurately, and safely because the heavy structure of the crane responds slowly and its payload oscillates. Manipulation difficulty is increased by nonintuitive control interfaces (such as buttons, levers, and joysticks) that require substantial experience to master. This paper presents a new type of interface that allows operators to drive a crane by simply moving a hand-held radio-frequency tag through the desired path. Real-time location sensors are used to track the movements of the tag and its position is used in a feedback control loop to drive the crane. Unfortunately, crane movements usually induce large-amplitude payload oscillations. Therefore, an input-shaping control element is used to limit payload swing. Experimental results on an industrial bridge crane validate the controller performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.