Abstract

Paper analytical devices (PADs) are a class of low-cost, portable, and easy-to-use platform for several analytical tests in clinical diagnostics, environmental pollution monitoring, and food and drug safety screening. These devices are primarily made from cellulosic paper. Considering the importance of eco-friendly and local or distributed manufacturing of devices realized during the COVID-19 pandemic, we systematically studied the potential of handmade Nepali paper to be used in fabricating PADs in this work. We characterized five different handmade papers made from locally available plant fibers using an eco-friendly method and used them to fabricate PADs for determining the drug quality. The thickness, grammage, and apparent density of the paper samples ranged from 198.6 to 314.8 μm, 49.1 to 117.8 g/m2, and 0.23 to 0.43 g/cm3, respectively. The moisture content, water filtration, and wicking speed ranged from 5.8 to 7.1%, 35.7 to 156.7, and 0.062 to 0.124 mms–1, respectively. Furthermore, the water contact angle and porosity ranged from 76.6 to 112.1° and 79 to 83%, respectively. The best paper sample (P5) was chosen to fabricate PADs for the determination of metformin, an antidiabetic drug. The metformin assay on PADs followed a linear range from 0.0625 to 0.5 mg/mL. The assay had a limit of detection and limit of quantitation of 0.05 and 0.18 mg/mL, respectively. The average amount of metformin concentration in samples collected from local pharmacies (n = 20) was 465.6 ± 15.1 mg/tablet. When compared with the spectrophotometric method, PAD assay correctly predicted the concentration of 90% samples. The PAD assay on handmade paper may provide a low-cost and easy-to-use system for screening the quality of drugs and other point-of-need applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call